TD 1 Nombres complexes et trigonométrie.

PTSI

1 Premières propriétés

Exercice 1.1:

Ecrire les nombres complexes suivants sous la forme a+ib avec $(a,b) \in \mathbb{R}^2$:

- 1. (1-2i)(3+i)(5+4i)
- 2. $\frac{1+i}{4-3i}$
- 3. $(5+i)^3 (2+3i)^2$
- 4. $\frac{(1+4i)^2 (8+i)^2}{(4+2i)^3 + (1+i)^2}$

Exercice 1.2:

Résoudre les équations suivantes :

- 1. z + |z| = 1 + i
- 2. z |z| = 1 2i
- 3. $z + 2\overline{z} = 5 + 3i$

Exercice 1.3:

1. Trouver par le calcul tous les nombres complexes vérifiant :

$$|z-1| = |z| = 1$$

2. Retrouver très rapidement ce résultat géométriquement.

Exercice 1.4:

Soit $z \in \mathbb{C} \setminus \{1\}$.

- 1. Trouver $x \in \mathbb{C}$ tel que $z = \frac{x+i}{x-i}$.
- 2. Montrer que $|z| = 1 \Leftrightarrow x \in \mathbb{R}$.

Exercice 1.5:

Soeint $(u,v)\in\mathbb{C}^2$. Démontrer les inégalités suivantes et étudier les cas d'égalité.

- 1. $|u+v| + |u-v| \le 2(|u| + |v|)$
- $2. \mid u + v \mid + \mid u v \mid \ge \mid u \mid + \mid v \mid$
- 3. $|u+v| + |u-v| \ge 2 |u|$
- 4. $|u+v| + |u-v| \ge 2 |v|$

Exercice 1.6:

Soient $(u, v) \in \mathbb{C}^2$. En considérant la quantité $(|u| - |v|)^2$, montrer que :

$$|uv| \le \frac{|u|^2 + |v|^2}{2}.$$

2 Nombres complexes de module 1

Exercice 2.1:

On considère l'application $\phi: \begin{array}{ccc} \mathbb{R} & \to & \mathbb{U} \\ x & \mapsto & \frac{1+ix}{1-ix} \end{array}$

- 1. Montrer que ϕ est bien définie.
- 2. L'application ϕ est-elle injective? surjective?

Exercice 2.2:

Soient $(u, v, w) \in \mathbb{U}^3$ tels que u + v + w = 0. On note $j = e^{\frac{2i\pi}{3}}$.

Montrer que l'on a $u = jv = j^2w$ ou bien $u = jw = j^2v$.

3 Trigonométrie et exponentielle complexe

Exercice 3.1:

Déterminer θ tel que $\cos(2\theta) = \sin(\theta)$ de deux manières différentes.

Exercice 3.2:

Résoudre l'équation $\sqrt{3}\cos(x) - \sin(x) = \sqrt{2}$.

Exercice 3.3:

Linéariser $\sin(x)^3$ et $\cos(x)^3$.

Exercice 3.4:

- 1. Exprimer $\cos(4x)$ et $\sin(4x)$ en fonction de $\cos(x)$ et $\sin(x)$.
- 2. Exprimer $\cos(5x)$ et $\sin(5x)$ en fonction de $\cos(x)$ et $\sin(x)$.

Exercice 3.5:

Calculer $\sum_{k=1}^{n} \frac{\cos(k\frac{\pi}{3})}{2^k}$.

Exercice 3.6:

Soit $n \in \mathbb{N}$ tel que $n \geq 2$ et soit $\omega_0, ...\omega_{n-1}$ les racines $n^{i\grave{e}mes}$ de l'unité.

- 1. Calculer $\sum_{k=0}^{n-1} \cos(\frac{2k\pi}{n})$ et $\sum_{k=0}^{n-1} \sin(\frac{k\pi}{n})$.
- 2. Calculer $\sum_{k=0}^{n-1} |\omega_k 1|^2$.

4 Equations et forme trigonométrique

Exercice 4.1:

Calculer les racines carrées des nombres suivants :

$$\frac{1}{2} + \frac{\sqrt{3}}{2}i$$
, $3i$, $1 - i$, $-1 + i$, -12 .

Exercice 4.2:

Lycée La Prat's PTSI

Calculer sans développer :

$$\left(\frac{1+i\sqrt{3}}{1-i}\right)^{20} \text{ et } \left(\frac{\frac{1}{2}+\frac{\sqrt{3}}{2}i}{3i}\right)^{12}.$$

Exercice 4.3:

Résoudre dans \mathbb{C} l'équation :

$$z^5 = \frac{\frac{1}{2} - \frac{\sqrt{3}}{2}i}{-1 + i\sqrt{3}}$$

Exercice 4.4:

Résoudre les équations suivantes :

1.
$$z^2 + (5 - 11i)z - 22 - 29i = 0$$
.

2.
$$z^2 - 2iz - 1 + 2i = 0$$
.

3.
$$iz^2 + iz + 1 + i = 0$$
.

4.
$$z^2 - 2^{\theta+1}z\cos(\theta) + 2^{2\theta} = 0$$
 avec $\theta \in \mathbb{R}$.

Exercice 4.5:

Résoudre l'équation $z^4 - (5+2i)z^2 - 50i = 0$.

Exercice 4.6:

- 1. a) Résoudre l'équation $4iz^3 + 2(1+3i)z^2 (5+4i)z + 3(1-7i) = 0$ sachant qu'elle admet une solution réelle.
- 2. b) Résoudre l'équation $z^3 (5-3i)z^2 + (6-11i)z + 2 + 16i = 0$ sachant qu'elle admet une solution imaginaire pure.
- 3. c) Résoudre l'équation $z^4 + 4iz^2 + 12(1+i)z 45 = 0$ sachant qu'elle admet une solution réelle et une solution imaginaire pure.

5 Géométrie et nombres complexes

Exercice 5.1:

Trouver l'ensemble des points M d'affixe z vérifiant $Arg(z-2i) \equiv \frac{\pi}{4}[2\pi]$.

Exercice 5.2:

Soit $z \in \mathbb{C}^*$. On appelle p et q ses racines carrées. Trouver une condition nécessaire et suffisantes pour que les points d'affixes z, p et q forment un traingle rectangle.

Exercice 5.3:

Soient $a, b, c, d \in \mathbb{C}$ tels que a + ib = c + id et a + c = b + d.

- 1. Que pouvez-vous dire des points d'affixes a, b, c, d?
- 2. En déduire qu'il existe $z \in \mathbb{C}$ tel que $(z-a)^4 = (z-b)^4 = (z-c)^4 = (z-d)^4$

Lycée La Prat's PTSI

Exercice 5.4:

Soit ABC un triangle équilatéral et M un point du cercle circonscrit au triangle ABC, appartenant à l'arc BC qui ne contient pas A. Montrer que :

$$MA = MB + MC$$
.

- 1. En considérant le point $I \in [AM]$ tel que MI = MB, démontrer que MIB est equilatéral. Conclure en utilisant la rotation de centre B et d'angle $\frac{\pi}{3}$.
- 2. Retrouver le résultat avec les nombres complexes. (à trouver une solution)

Exercice 5.5:

On considère la fonction complexe définie par $f(z)=z^2$. Quelle est l'image par f de :

- une droite passant par l'origine
- une demi droite passant par l'origine
- un cercle centré en l'origine

Exercice 5.6:

Trouver les nombres $z \in \mathbb{C}$ tels que z^3 , z et 1 soient alignés.

Exercice 5.7:

Soient A, B et C trois points du plan d'affixes respectives a, b et c. On suppose que $b \in \mathbb{R}_+$ et que 0 est le milieu de [BC].

- 1. Montrer que ABC est isocèle en A si et seulement si $a + \bar{a} = 0$.
- 2. Montrer que ABC est rectangle en A si et seulement si $a\bar{a} = b^2$
- 3. Déduire des questions précédentes le cas où 0 n'est pas le milieu de BC et où $b \in \mathbb{C}$.

Exercice 5.8:

Reconnaître et préciser les caractéristiques des applications suivantes f, g, h, k et l définies par :

- 1. f(z) i = (1+i)(z-i)
- 2. g(z) = (-2+2i)z + 5 + i
- 3. $h(z) = \frac{1+i}{1-i}z + 2i$
- 4. $k(z) = \frac{2-i}{i+1}z$
- 5. l(z) = (-1+2i)z + 3 4i

Exercice 5.9:

Soient A,B et C trois points du plan d'affixes respectives a, b, et c. Calculer l'affixe du centre du cercles circonscrit à ABC en fonction de a, b et c.

Exercice 5.10:

Soient A,B et C trois points du plan d'affixes respectives a, b, et c. Montrer que le triangle ABC est équilatéral si et seulement si :

$$a^2 + b^2 + c^2 = ab + ac + bc$$
.

Indication : Penser aux rotations