TD 6: Réels et suites

1 Ensemble des nombres réels

Exercice 1.1:

L'ensemble :

$$\{x \in \mathbb{Q} \mid x < \sqrt{2}\}$$

admet-il une borne supérieure? Si oui quelle est elle?

Exercice 1.2:

Soit $A \subset \mathbb{R}$ une partie ayant un plus grand élément $a \in A$. Montrer que $a = \sup(A)$.

Exercice 1.3:

On considère la partie $X = \{x \in \mathbb{R}_+ \mid x^2 \le 2\}.$

- 1. Montrer que X admet une borne supérieure que l'on notera a.
- 2. Dans cette quetion on suppose que $a^2 < 2$.
 - (a) Vérifier que $\forall h \in [0,1], (a+h)^2 \leq a^2 + 2ah + h.$
 - (b) On pose désormais $h = \min(1, \frac{2-a^2}{2a+1})$. Montrer que $a + h \in X$.
 - (c) En déduire une contradiction.
- 3. On suppose maintenant que $a^2 > 2$
 - (a) Vérifier que $\forall h \in \mathbb{R}, (a-h)^2 \ge a^2 2ah$.
 - (b) On pose désormais $h = \min(a, \frac{a^2-2}{2a})$. Aboutir a une contradiction comme dans la question précédente.
- 4. Conclure

Exercice 1.4:

- 1. Quelle est la borne inférieure de \mathbb{R}_{+}^{*} .
- 2. En déduire que si $a \in \mathbb{R}$ vérifie $\forall \epsilon > 0, |a| \leq \epsilon$ alors a = 0.

Exercice 1.5:

Soient A et B deux parties de \mathbb{R} majorées. On définit $A + B = \{a + b \mid a \in A, b \in B\}$.

Montrer que A + B admet une borne supérieure et que $\sup(A + B) = \sup(A) + \sup(B)$.

Exercice 1.6:

Montrer que la fonction $| : \mathbb{R} \to \mathbb{R}$ est croissante.

Exercice 1.7:

Montrer que $\forall x \in \mathbb{R}$ et $\forall p \in \mathbb{Z}, |x+p| = |x| + p$.

Exercice 1.8:

Soient $(x, y) \in \mathbb{R}^2$. A-t-on toujours $\lfloor x + y \rfloor = \lfloor x \rfloor + \lfloor y \rfloor$?

Exercice 1.9:

- 1. Montrer que l'application définie sur \mathbb{R} par $x \mapsto \lfloor 2x \rfloor 2\lfloor x \rfloor$ prend uniquement les valeurs 0 et 1.
- 2. Montrer que $\forall x \in \mathbb{R}, \ \lfloor x \rfloor + \lfloor x + \frac{1}{2} \rfloor = \lfloor 2x \rfloor.$

2 Suites définitions

Exercice 2.1:

- 1. Montrer que la sommes de deux suites majorées est majorée.
- 2. Montrer que la sommes de deux suites bornées est bornée.

Exercice 2.2:

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction. On pose $u_n = f(n)$.

- 1. Montrer que si f est monotone alors (u_n) aussi.
- 2. Que dire de la réciproque?

3 Limites de suites

Exercice 3.1:

Soit (u_n) une suite qui tend vers 0. Montrer qu'à partir d'un certain rang $|u_n| \le |u_n|$.

Exercice 3.2:

Soient (u_n) une suite convergente. Montrer que $u_{n+1} - u_n \to 0$.

Exercice 3.3:

Montrer que la somme d'une suite convergente et d'une suite divergente est divergente.

Exercice 3.4:

Trouver deux suites divergentes dont la somme et le produit sont des suites convergentes.

Exercice 3.5:

Déterminer la limite de la suite $((\frac{1}{n}-1)n^2)$.

Exercice 3.6:

Déterminer la limite de la suite $((\frac{1}{n}+1)^2-n^2)$.

Exercice 3.7:

Etudier la convergence de la suite définie pour tout $n \in \mathbb{N}$ par :

$$u_n = \frac{2n^2 - \sin(n)}{\cos(n) - 3n^2}.$$

Exercice 3.8:

Grâce à un encadrement, étudier la limite de la suite définie pour tout $n \in \mathbb{N}$ par :

$$u_n = \sum_{k=1}^n \frac{n}{\sqrt{n^4 + k}}.$$

Exercice 3.9:

Soit (u_n) une suite bornée.

- 1. Montrer que l'on peut poser pour tout $n \in \mathbb{N}$, $v_n = \sup\{u_k \mid k \geq n\}$ et $w_n = \inf\{u_k \mid k \geq n\}$.
- 2. Montrer que les suites (v_n) et (w_n) sont convergentes.

3. Montrer que (u_n) est convergente si et seulement si $\lim v_n = \lim w_n$.

Exercice 3.10:

1. Montrer que $\forall x \in \mathbb{R}, |\sin(x) - x| \leq \frac{x^2}{2}$.

2. Déterminer $\lim_{n\to+\infty} \sum_{k=1}^{n} \sin(\frac{k}{n^2})$.

Exercice 3.11:

1. Montrer que $\forall x \in \mathbb{R}^*, \ ch(x) = \frac{sh(2x)}{2sh(x)}$

2. Soit $x \in \mathbb{R}$. Calculer $\lim_{n \to +\infty} \prod_{k=1}^{n} ch(\frac{x}{2^k})$.

4 Limites théoriques

Exercice 4.1:

Soit u la suite de terme général $u_n = \sum_{k=0}^{n} \frac{1}{k!}$.

1. Montrer que pour tout $k \ge 1$, $\frac{1}{k!} \le \frac{1}{2^{k-1}}$.

2. En déduire que (u_n) est majorée par 3.

3. En déduire la convergence de (u_n) .

Exercice 4.2:

Démontrer que les suites définies pour tout $n \in \mathbb{N}^*$ par :

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n!}$

sont adjacentes et donc convergentes.

Exercice 4.3:

On définit pour tout $n \in \mathbb{N}^*$,

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n \cdot n!}$

3

1. Montrer que ces deux suites sont adjacentes. Elles convergent vers le nombre d'Euler e.

2. On suppose que $e \in \mathbb{Q}$. On écrit donc $e = \frac{p}{q}$ avec p et q entiers supérieurs à 1.

(a) Montrer que pour tout $n \in \mathbb{N}^*$, $u_n < e < v_n$.

(b) Montrer que le nombre $q!(e-u_q)$ est entier.

(c) Déduire que e est irrationnel.

Exercice 4.4:

On considère les suites définies pour tout $n \in \mathbb{N}$ par $u_n = \sum_{k=0}^n \frac{(-1)^k}{k+1}$, $v_n = u_{2n}$ et $w_n = u_{2n+1}$.

- 1. Montrer que (v_n) et (w_n) sont adjacentes.
- 2. En déduire la convergence de (u_n) .

Exercice 4.5:

Montrer qu'une suite à valeurs dans \mathbb{Z} est convergente si et seulement si elle est constante à partir d'un certain rang.

Exercice 4.6:

Soient (u_n) et (v_n) deux suites telles que $\begin{cases} 0 \le u_n \le 2 \\ 0 \le v_n \le 3 \end{cases}$ et $\lim u_n v_n = 6$. Que peut-on dire des suites (u_n) et (v_n)

Exercice 4.7:

Soit (u_n) une suite croissante telle que $\forall n \in \mathbb{N}, u_{2n} - u_n \leq \frac{1}{n}$. Montrer que la suite est convergente.

Exercice 4.8:

On définit les suites (a_n) et (b_n) par $b_0 > a_0 > 0$ et $\forall n \in \mathbb{N}$:

$$a_{n+1} = \sqrt{a_n b_n}$$
 et $b_{n+1} = \frac{a_n + b_n}{2}$.

Montrer que ces deux suites sont convergentes et ont la même limite.

Exercice 4.9:

Pour tout $n \in \mathbb{N}^*$, on définit $u_n = \sqrt{1 + \sqrt{2 + \dots + \sqrt{n}}}$.

- 1. Montrer que pour tout $n \in \mathbb{N}^*$, $u_{n+1} \leq 1 + \sqrt{2}u_n$.
- 2. En déduire que (u_n) est convergente.

5 Suites complexes

Exercice 5.1:

Montrer que la suite de terme général $u_n = \frac{(1+i)^n}{2^n}$ tend vers 0.

Exercice 5.2:

Etudier la convergence de la suite de terme général :

$$u_n = (1 + \frac{1}{2^n}) + (2 + \frac{1}{n})i.$$

Exercice 5.3:

Etudier la convergence de la suite définie par :

$$u_n = 1 + ni$$
.

Exercice 5.4:

Soit $a \in \mathbb{C}$. Etudier selon la valeur de |a| la convergence de la suite (a^n) .

Exercice 5.5:

Etudier la convergence de la suite définie pour tout $n \in \mathbb{N}$ par :

$$u_n = \exp(ni\frac{\pi}{2}).$$

Exercice 5.6:

Etudier la suite complexe définie par $z_{n+1} = \frac{z_n + |z_n|}{2}$.

6 Suites récurrentes

Exercice 6.1:

Justifier l'existence et l'unicité d'une suite vérifiant :

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \ln(1 + u_n) \quad \forall n \in \mathbb{N} \end{cases}.$$

Exercice 6.2:

Est-il correct de définir une suite par

$$\begin{cases} u_0 = 2 \\ u_{n+1} = \ln(u_n) \quad \forall n \in \mathbb{N} \end{cases}.$$

Exercice 6.3:

Soit (u_n) une suite vérifiant :

$$\begin{cases} u_0 = 0 & u_1 = 1 \\ u_{n+2} = 2u_{n+1} - u_n & \forall n \in \mathbb{N} \end{cases}.$$

Donner son terme général en fonction de n.

Exercice 6.4:

Soit (u_n) une suite vérifiant :

$$\begin{cases} u_0 = 0 & u_1 = 1 \\ u_{n+2} = 2u_{n+1} + u_n & \forall n \in \mathbb{N} \end{cases}.$$

Donner son terme général en fonction de n.

Exercice 6.5:

Soit (u_n) une suite vérifiant :

$$\begin{cases} u_0 = 0 & u_1 = 1 \\ u_{n+2} = 2u_{n+1} - 2u_n & \forall n \in \mathbb{N} \end{cases}.$$

Donner son terme général en fonction de n.

Exercice 6.6:

Dans les deux cas, déterminer une expression de la suite définie par :

1.
$$u_0 = 2$$
 et $\forall n \in \mathbb{N}, u_{n+1} = \lambda u_n + 3$ avec $\lambda \in \mathbb{R}$.

2.
$$u_1 = -1$$
, $u_2 = 1$ et $\forall n \in \mathbb{N}^*$, $u_{n+2} = 6u_{n+1} - 9u_n$.

Exercice 6.7:

Soit
$$(u_n)$$
 une suite définie par
$$\begin{cases} 0 < u_0, u_1 < 1 \\ u_{n+2} = \frac{\sqrt{u_{n+1}} - \sqrt{u_n}}{2} \end{cases}.$$

1. Montrer que pour tout $n \in \mathbb{N}$, $u_n \in]0,1[$.

- 2. On pose pour tout $n \in \mathbb{N}$, $v_n = \min(u_n, u_{n+1})$.
 - (a) Montrer que (v_n) est croissante.
 - (b) Montrer que pour tout $n \in \mathbb{N}$, $v_{n+2} \ge \sqrt{v_n}$.
 - (c) Montrer que $\lim u_n = 1$.

Exercice 6.8:

On définit $u_0 = 0$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \frac{1 + u_n}{2 + u_n}.$$

- 1. Chercher les réels l_1 et l_2 tels que $f(l_i) = l_i$ où f désigne la fonction telle que $u_{n+1} = f(u_n)$.
- 2. Etudier la suite définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{u_n l_1}{u_n l_2}$.
- 3. Etudier la convergence de (u_n) .

Exercice 6.9:

On définit $u_0 = 0$ et pour tout $n \in \mathbb{N}$:

$$u_{n+1} = \frac{-1 + u_n}{3 + u_n}.$$

- 1. Chercher le réels l tels que f(l) = l où f désigne la fonction telle que $u_{n+1} = f(u_n)$.
- 2. Etudier la suite définie pour tout $n \in \mathbb{N}$ par $v_n = \frac{1}{u_n l}$.
- 3. Etudier la convergence de (u_n) .

Exercice 6.10:

Etudier la suite définie pour tout $n \in \mathbb{N}$ par $u_{n+1} = 2u_n(1 - u_n)$.